对于数学学习方法,数学是数字与图形结合的一门学科,有效的数学学习方法,不仅能提高数学成绩,而且能扩散思维,增强分析问题的能力和逻辑思维能力,从而带动其他学科成绩快速提升,对人的一生也是受益匪浅的。数学是很多立刻较为薄弱的同学在学习成绩提高的路上一座难以逾越的大山,那么数学成绩该怎么提高,数学学习方法又有哪些。
转化思维的数学学习方法
转化思维,既是一种数学学习方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。
逻辑思维的数学学习方法
逻辑是一切思考的基础。逻辑思维是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。
逆向思维的数学学习方法
逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
对应思维的数学学习方法
对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。
创新思维的数学学习方法
创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,得出与众不同的解决方案。可分为差异性、探索式、优化式及否定性四种。
系统思维的数学学习方法
系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及的知识点有一个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种类型,以及对应的解决方法。
类比思维的数学学习方法
类比思维是指根据事物之间某些相似性质,将陌生的、不熟悉的问题与熟悉问题或其他事物进行比较,发现知识的共性,找到其本质,从而解决问题的思维方法。
形象思维的数学学习方法
形象思维主要是指人们在认识世界的过程中,对事物表象进行取舍时形成的,是指用直观形象的表象,解决问题的思维方法。想象是形象思维的高级形式,也是其中一种基本方法。
俗话说:“好记性不如烂笔头。”的确,上课时把教师讲的概念、公式和解题技巧记下来,把听过或看过的重要信息清晰地保存下来,有利于减轻复习负 担,提高学习效率。但在实际学习中,不少同学忙于记笔记,没有处理好听、看、记和思的关系,顾此失彼,从而影响学习效果。
问题:笔记成了教学实录
误区行为:有的同学习惯于“教师讲,自己记,复习背,考试模仿”的学习,一节课下来,他们的笔记往往记了几页纸,可以说是教材和教师板书的“映射”(翻版),成了教学实录。
产生后果:这些同学过分依赖笔记,忽视老师的讲解,忽视思考,以为老师讲的没有听懂不要紧,只要课后认真看笔记就可以了。殊不知,这样做往往会忽视老师的一些精彩分析,使自己对知识的理解肤浅,增加学习负担,学习效率反而降低,易形成恶性循环。
措施:
1、一般来讲,上课要以听讲和思考为主,并简明扼要地把教师讲的思路记下来,课本上叙述详细的地方可以不记或略记(这就需要做到很好的预习)。
2、要记下自己的疑问或闪光的思想。
如果老师讲概念或公式时(主要指基础知识),主要记知识的发生背景、实例、分析思路、关键的推理步骤、重要结论和注意事项等;
如果是复习讲评课,重点要记解题策略(如审题方法、思路分析、***解法等)以及典型错误与原因剖析,总结思维过程,揭示解题规律。
3、记笔记时,不要把笔记本记满,要留有余地,以便课后反思、整理,这样既可以提高听课效率,又有利于课后有针对性的复习,从而收到事半功倍的效果。
数学学习方法——培养兴趣
有许多同学在小学都曾有过这样的感受,每当你认识了一个数学规律,解决了一个较难的应用问题,成功的喜悦是无法用别的东西来替代的,它激励你的学习热情和好奇心,越学越爱学。学习的兴趣和求知欲是要不断地培养的,况且同学们刚刚迈进“数学王国”的大花园里,许多奥妙无穷的数学问题还等着你们去学习、观赏、研究。
数学学习方法——独立思考
过去有些同学认为:学习数学主要是靠上课听老师讲明白,而把我们手中的数学课本仅仅当成做作业的“习题集”。这就有两个认识问题必须要解决。一是同学们要认识到,我们的教科书记载了由数学工作者整理的、大家必须掌握的基础知识,以及如何运用这些知识解决问题等。因此,要想真正获得知识,认真读书、培养自学能力是一条根本途径。我们希望同学们在中学老师的指导、帮助下,从过去不读书、不会读书转变为爱读书、学会读书,进而养成认真读书的好习惯;二是同学们还要认识到,许多数学问题不是单靠老师讲明白的,主要是靠同学们自己想明白的。
孔子日:”学而不思则罔,思而不学则殆。”这句话极力精辟地阐述了学习和思考的辩证关系,即要学而恩、又要思而学。大家学习数学的过程主要是自己不断深入思考的过程。我们希望大家今后在上数学课时。无论老师讲新课,还是复习、讲评作业练习,都要使自己的注意力高度集中,边听边积极思考问题,捕捉有用的信息,随时抓住萌发出的灵感。对于没弄明白的问题,一定要及时、主动去解决它,直到弄懂为止。
数学学习方法——预习指导
初一学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。在指导学生预习时应要求学生做到:一粗读,先粗略浏览课本的有关内容,掌握本节知识的大概。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作好记号,以便带着疑问去听课。实践证明,养成良好的预习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。
数学学习方法——听课指导
在听课方法的指导方面要处理好“听”、“思”、“记”的关系。
“听”是直接用感官接受知识,应指导学生在听的过程中注意:(1)听每节课的学习要求(2)听知识引人及知识形成过程(3)听懂重点、难点剖析(尤其是预习中的疑点)(4)听例题解法的思路和数学思想方法(5)听好课后小结。教师讲课要重点突出,层次分明,要注意防止“注入式”、“满堂灌”,一定要掌握***讲授时间,使学生听之有效。
“思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:(1)多思、勤思,随听随思(2)深思,即追根溯源地思考,善于大胆提出问题(3)善思,由听和观察去联想、猜想、归纳(4)树立批判意识,学会反思。可以说“听”是“思”的基础,“思”是“听”的深化,是学习方法的本质的内容,会思维才会学习。
数学学习方法——复习方法
一、抓好基础
数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。
只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。
二、制定好计划和奋斗目标
复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。
三、严防题海战术,克服盲目做题而不注重归纳的现象
做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的。
但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用。
四、常做高考题,揭开高考试题的神秘面纱
高考题是最好的习题,它在考查知识点时的切入点新而不俗,它正确地控制了对所考查的知识点的难度。解答一定的高考题,有助于把握高考对该知识点的难度要求;有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,防止做偏题、怪题。
五、归纳数学大思维、大策略
数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。
六、打好最后阶段复习这一仗,促成数学学习的飞跃
最后阶段的复习是专题讲座,老师讲对重点知识、重点解题方法、重点数学思想的详细讲座和强化训练。
七、积累一定的考试经验
本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。
八、攻克三种题目的解法
数学试题分为选择题、填空题和解答题三种题型,选择题、填空题是基础,共76分,解答题是提高分数的关键,攻克这三种题目的解法,特别是选择题的解法,它解法灵活多样。掌握多种这些解题方法,会使解答试题速度快而准确,同时为解答最后六道解答题赢得了更多的时间。